Convergence of periodically forced rank-type equations
نویسندگان
چکیده
Consider a difference equation which takes the k-th largest output of m functions of the previousm terms of the sequence. If the functions are also allowed to change periodically as the difference equation evolves, this is analogous to a differential equation with periodic forcing. A large class of such non-autonomous difference equations are shown to converge to a periodic limit, which is independent of the initial condition. The period of the limit does not depend on how far back each term is allowed to look back in the sequence, and is in fact equal to the period of the forcing.
منابع مشابه
Periodically Forced Double Homoclinic Loops to a Dissipative Saddle
In this paper we present a comprehensive theory on the dynamics of strange attractors in periodically perturbed second order differential equations assuming that the unperturbed equations have two homoclinic loops to a dissipative saddle fixed point. We prove the existence of many complicated dynamical objects for given equations, ranging from attractive quasi-periodic torus, to Newhouse sinks ...
متن کاملA new model of (I+S)-type preconditioner for system of linear equations
In this paper, we design a new model of preconditioner for systems of linear equations. The convergence properties of the proposed methods have been analyzed and compared with the classical methods. Numerical experiments of convection-diffusion equations show a good im- provement on the convergence, and show that the convergence rates of proposed methods are superior to the other modified itera...
متن کاملGlobal Dynamics of Some Periodically Forced, Monotone Difference Equations
We study a class of periodically forced, monotone difference equations motivated by applications from population dynamics. We give conditions under which there exists a globally attracting cycle and conditions under which the attracting cycle is attenuant.
متن کاملForced Convection Heat Transfer of Non-Newtonian Fluids Through Circular Ducts
The Galerkin finite element method is used to solve the three dimensional continuity, momentum and energy equations for laminar Newtonian and power-law model non-Newtonian flow through horizontal circular tube. The governing equations are non-dimensionalized with respect to specific variables and converted into algebraic equations using appropriate elements. To accelerate convergence a combinat...
متن کاملForced Convection Heat Transfer of Non-Newtonian Fluids Through Circular Ducts
The Galerkin finite element method is used to solve the three dimensional continuity, momentum and energy equations for laminar Newtonian and power-law model non-Newtonian flow through horizontal circular tube. The governing equations are non-dimensionalized with respect to specific variables and converted into algebraic equations using appropriate elements. To accelerate convergence a combinat...
متن کامل